Package hardware-bus-def: Definition of hardware bus devices
Information
| name | hardware-bus-def |
| version | 1.25 |
| description | Definition of hardware bus devices |
| author | Joe Leslie-Hurd <joe@gilith.com> |
| license | MIT |
| provenance | HOL Light theory extracted on 2014-10-30 |
| checksum | d4921f168ad7d633de4d5e08f48adf7f0232fc1a |
| requires | bool hardware-thm hardware-wire natural |
| show | Data.Bool Hardware Number.Natural |
Files
- Package tarball hardware-bus-def-1.25.tgz
- Theory source file hardware-bus-def.thy (included in the package tarball)
Defined Constants
- Hardware
- Bus
- Bus.and2
- Bus.and3
- Bus.case1
- Bus.connect
- Bus.delay
- Bus.lift2
- Bus.lift3
- Bus.majority3
- Bus.not
- Bus.or2
- Bus.or3
- Bus.reverse
- Bus.wire
- Bus.xor2
- Bus.xor3
- Bus
Theorems
⊦ Bus.connect = Bus.lift2 connect
⊦ Bus.delay = Bus.lift2 delay
⊦ Bus.not = Bus.lift2 not
⊦ Bus.and2 = Bus.lift3 and2
⊦ Bus.or2 = Bus.lift3 or2
⊦ Bus.xor2 = Bus.lift3 xor2
⊦ ∀s. Bus.case1 s = Bus.lift3 (case1 s)
⊦ ∀x i w. Bus.wire x i w ⇔ Bus.sub x i 1 (Bus.single w)
⊦ ∀w x y z. Bus.and3 w x y z ⇔ ∃wx. Bus.and2 w x wx ∧ Bus.and2 wx y z
⊦ ∀w x y z. Bus.or3 w x y z ⇔ ∃wx. Bus.or2 w x wx ∧ Bus.or2 wx y z
⊦ ∀w x y z. Bus.xor3 w x y z ⇔ ∃wx. Bus.xor2 w x wx ∧ Bus.xor2 wx y z
⊦ ∀w x y z.
Bus.majority3 w x y z ⇔
∃wx wy xy.
Bus.and2 w x wx ∧ Bus.and2 w y wy ∧ Bus.and2 x y xy ∧
Bus.or3 wx wy xy z
⊦ ∀r x y.
Bus.lift2 r x y ⇔
∃n.
Bus.width x = n ∧ Bus.width y = n ∧
∀i xi yi. Bus.wire x i xi ∧ Bus.wire y i yi ⇒ r xi yi
⊦ ∀x y.
Bus.reverse x y ⇔
Bus.width x = Bus.width y ∧
∀i j xi yj.
i + (j + 1) = Bus.width x ∧ Bus.wire x i xi ∧ Bus.wire y j yj ⇒
xi = yj
⊦ ∀r x y z.
Bus.lift3 r x y z ⇔
∃n.
Bus.width x = n ∧ Bus.width y = n ∧ Bus.width z = n ∧
∀i xi yi zi.
Bus.wire x i xi ∧ Bus.wire y i yi ∧ Bus.wire z i zi ⇒ r xi yi zi
External Type Operators
- →
- bool
- Hardware
- bus
- wire
- Number
- Natural
- natural
- Natural
External Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ⊤
- Bool
- Hardware
- and2
- case1
- connect
- delay
- not
- or2
- xor2
- Bus
- Bus.single
- Bus.sub
- Bus.width
- Number
- Natural
- +
- bit1
- zero
- Natural
Assumptions
⊦ ⊤
⊦ (∀) = λp. p = λx. ⊤