| name | list-interval-def |
| version | 1.13 |
| description | list-interval-def |
| author | Joe Hurd <joe@gilith.com> |
| license | HOLLight |
| provenance | HOL Light theory extracted on 2011-07-20 |
| show | Data.Bool |
⊦ (∀m. Data.List.interval m Number.Numeral.zero = Data.List.[]) ∧
∀m n.
Data.List.interval m (Number.Natural.suc n) =
Data.List.:: m (Data.List.interval (Number.Natural.suc m) n)
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ (∀) = λp. p = λx. T
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀e f.
∃fn.
fn Number.Numeral.zero = e ∧
∀n. fn (Number.Natural.suc n) = f (fn n) n