| name | modular-thm |
| version | 1.0 |
| description | modular-thm |
| author | Joe Hurd <joe@gilith.com> |
| license | MIT |
| provenance | HOL Light theory extracted on 2011-02-19 |
| show | Data.Bool |
⊦ ∀x. Number.Natural.< (Number.Modular.toNatural x) Number.Modular.modulus
⊦ ∀x.
Number.Natural.div (Number.Modular.toNatural x)
Number.Modular.modulus = Number.Numeral.zero
⊦ ∀x y. Number.Modular.toNatural x = Number.Modular.toNatural y ⇒ x = y
⊦ ∀x y.
Number.Modular.toNatural (Number.Modular.+ x y) =
Number.Natural.mod
(Number.Natural.+ (Number.Modular.toNatural x)
(Number.Modular.toNatural y)) Number.Modular.modulus
⊦ ∀x y.
Number.Modular.fromNatural x = Number.Modular.fromNatural y ⇔
Number.Natural.mod x Number.Modular.modulus =
Number.Natural.mod y Number.Modular.modulus
⊦ T
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λP. P = λx. T
⊦ ∀x. Number.Modular.fromNatural (Number.Modular.toNatural x) = x
⊦ ∀n.
Number.Natural.< (Number.Natural.mod n Number.Modular.modulus)
Number.Modular.modulus
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀x.
Number.Modular.toNatural (Number.Modular.fromNatural x) =
Number.Natural.mod x Number.Modular.modulus
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ ∀m n. Number.Natural.< m n ⇒ Number.Natural.div m n = Number.Numeral.zero
⊦ ∀x1 y1.
Number.Modular.fromNatural (Number.Natural.+ x1 y1) =
Number.Modular.+ (Number.Modular.fromNatural x1)
(Number.Modular.fromNatural y1)