Package monoid-mult-thm: Properties of monoid multiplication

Information

namemonoid-mult-thm
version1.3
descriptionProperties of monoid multiplication
authorJoe Leslie-Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2014-06-12
requiresbool
monoid-mult-def
monoid-thm
monoid-witness
natural
showAlgebra.Monoid
Data.Bool
Number.Natural

Files

Theorems

n. 0 * n = 0

x. x * 1 = x

x. x * 2 = x + x

x n. x * suc n = x * n + x

x m n. x * (m * n) = x * m * n

x m n. x * (m + n) = x * m + x * n

x n y. x + y = y + x x * n + y = y + x * n

x n y. y + x = x + y y + x * n = x * n + y

External Type Operators

External Constants

Assumptions

bit0 0 = 0

t. (x. t) t

() = λp. p = λx.

t. t t

x. x * 0 = 0

x. 0 + x = x

x. x + 0 = x

m. m * 0 = 0

n. 0 + n = n

n. bit1 n = suc (bit0 n)

() = λp q. p q p

x. 0 + x = x + 0

m. suc m = m + 1

n. bit0 (suc n) = suc (suc (bit0 n))

x y. x = y y = x

() = λp q. (λf. f p q) = λf. f

m n. suc m + n = suc (m + n)

x n. x * suc n = x + x * n

m n. m * suc n = m + m * n

x y z. x + y + z = x + (y + z)

p. p 0 (n. p n p (suc n)) n. p n

x y z. x + z = z + x y + z = z + y x + y + z = z + (x + y)