Package montgomery: Montgomery multiplication

Information

namemontgomery
version1.1
descriptionMontgomery multiplication
authorJoe Leslie-Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2012-11-09
requiresbool
natural
showData.Bool
Number.Natural

Files

Defined Constant

Theorems

n r k a. Montgomery.reduce n r k a = (a + (a * k mod r) * n) div r

n r k a.
    ¬(n = 0) ¬(r = 0) a r * r Montgomery.reduce n r k a < r + n

n r k a.
    ¬(n = 0) ¬(r = 0) a n * r Montgomery.reduce n r k a < 2 * n

n r s k a.
    ¬(n = 0) r * s = k * n + 1
    Montgomery.reduce n r k a mod n = a * s mod n

Input Type Operators

Input Constants

Assumptions

¬

p. p

(¬) = λp. p

() = λp. p = λx.

t. t t

t. t t

n. ¬(suc n = 0)

n. 0 * n = 0

n. 0 + n = n

m. m + 0 = m

t. t ¬t

m. m * 1 = m

() = λp q. p q p

m. suc m = m + 1

x y. x = y y = x

m n. m * n = n * m

m n. m + n = n + m

n. 2 * n = n + n

() = λp q. (λf. f p q) = λf. f

() = λp. q. (x. p x q) q

m n. ¬(n = 0) m mod n < n

m n. ¬(m = 0) m * n mod m = 0

x y z. x = y y = z x = z

m n p. m * (n * p) = m * n * p

a b n. b < a * n b div a < n

m n p. m + n < m + p n < p

m n p. m + p n + p m n

m n p. m < n n p m < p

n m. ¬(n = 0) m mod n mod n = m mod n

m n p. m * (n + p) = m * n + m * p

m n. ¬(n = 0) (m div n) * n + m mod n = m

m n p. m * p < n * p m < n ¬(p = 0)

n m p. ¬(n = 0) (m mod n) * (p mod n) mod n = m * p mod n

n a b. ¬(n = 0) (a mod n + b mod n) mod n = (a + b) mod n