Package montgomery: Montgomery multiplication

Information

namemontgomery
version1.4
descriptionMontgomery multiplication
authorJoe Leslie-Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2012-11-09
requiresbool
natural
showData.Bool
Number.Natural

Files

Defined Constants

Theorems

n r k a. Montgomery.doubleExp n r k a 0 = a

n r k a. Montgomery.reduce n r k a = (a + (a * k mod r) * n) div r

n r k a m. ¬(n = 0) n r a < r Montgomery.doubleExp n r k a m < r

n r k a.
    ¬(n = 0) ¬(r = 0) a r * r Montgomery.reduce n r k a < r + n

n r k m a.
    ¬(n = 0) ¬(r = 0) a r * m Montgomery.reduce n r k a < m + n

n r k a.
    ¬(n = 0) ¬(r = 0) a r * n Montgomery.reduce n r k a < 2 * n

n r s k a.
    ¬(n = 0) r * s = k * n + 1
    Montgomery.reduce n r k a mod n = a * s mod n

n r k a m.
    Montgomery.doubleExp n r k a (suc m) =
    let b Montgomery.reduce n r k (a * a) in
    let c if r b then b - n else b in
    Montgomery.doubleExp n r k c m

n r s k a m.
    ¬(n = 0) n r r * s = k * n + 1
    Montgomery.doubleExp n r k a m mod n = (a * s) 2 m * r mod n

Input Type Operators

Input Constants

Assumptions

¬

¬

t. t t

n. 0 n

p. p

t. t ¬t

(¬) = λp. p

() = λp. p ((select) p)

t. (x. t) t

() = λp. p = λx.

t. t t

t. t t

t. t t

t. t

t. t

n. ¬(suc n = 0)

n. 0 * n = 0

n. 0 + n = n

m. m + 0 = m

t. t ¬t

m. m 0 = 1

m. m * 1 = m

n. n 1 = n

() = λp q. p q p

m. suc m = m + 1

t1 t2. (if then t1 else t2) = t2

t1 t2. (if then t1 else t2) = t1

x y. x = y y = x

m n. m * n = n * m

m n. m + n = n + m

n. n 2 = n * n

n. 2 * n = n + n

m n. ¬(m < n) n m

() = λp q. (λf. f p q) = λf. f

n. ¬(n = 0) n mod n = 0

() = λp. q. (x. p x q) q

m n. m suc n = m * m n

m n. ¬(n = 0) m mod n < n

() = λp q. r. (p r) (q r) r

m n. n m m - n + n = m

m n. m < n m n ¬(m = n)

m n. ¬(m = 0) m * n mod m = 0

x y z. x = y y = z x = z

m n p. m * (n * p) = m * n * p

m n p. m (n * p) = (m n) p

a b n. b < a * n b div a < n

m n p. m + n < m + p n < p

m n p. n + m < p + m n < p

m n p. m + p n + p m n

m n p. m < n n p m < p

m n p. m n n p m p

p. (x. y. p x y) y. x. p x (y x)

p. p 0 (n. p n p (suc n)) n. p n

n m. ¬(n = 0) m mod n mod n = m mod n

m n p. m * (n + p) = m * n + m * p

(∃!) = λp. () p x y. p x p y x = y

e f. ∃!fn. fn 0 = e n. fn (suc n) = f (fn n) n

m n. ¬(n = 0) (m div n) * n + m mod n = m

m n p. m * n m * p m = 0 n p

m n p. m * p n * p m n p = 0

m n p. m * p < n * p m < n ¬(p = 0)

m n p q. m = n + q * p m mod p = n mod p

p c x y. p (if c then x else y) (c p x) (¬c p y)

n m p. ¬(n = 0) m * (p mod n) mod n = m * p mod n

n m p. ¬(n = 0) (m mod n) * p mod n = m * p mod n

n m p. ¬(n = 0) (m mod n) p mod n = m p mod n

n m p. ¬(n = 0) (m mod n) * (p mod n) mod n = m * p mod n

n a b. ¬(n = 0) (a mod n + b mod n) mod n = (a + b) mod n