Package montgomery: Montgomery multiplication
Information
| name | montgomery |
| version | 1.4 |
| description | Montgomery multiplication |
| author | Joe Leslie-Hurd <joe@gilith.com> |
| license | MIT |
| provenance | HOL Light theory extracted on 2012-11-09 |
| requires | bool natural |
| show | Data.Bool Number.Natural |
Files
- Package tarball montgomery-1.4.tgz
- Theory file montgomery.thy (included in the package tarball)
Defined Constants
- Number
- Natural
- Montgomery
- Montgomery.doubleExp
- Montgomery.reduce
- Montgomery
- Natural
Theorems
⊦ ∀n r k a. Montgomery.doubleExp n r k a 0 = a
⊦ ∀n r k a. Montgomery.reduce n r k a = (a + (a * k mod r) * n) div r
⊦ ∀n r k a m. ¬(n = 0) ∧ n ≤ r ∧ a < r ⇒ Montgomery.doubleExp n r k a m < r
⊦ ∀n r k a.
¬(n = 0) ∧ ¬(r = 0) ∧ a ≤ r * r ⇒ Montgomery.reduce n r k a < r + n
⊦ ∀n r k m a.
¬(n = 0) ∧ ¬(r = 0) ∧ a ≤ r * m ⇒ Montgomery.reduce n r k a < m + n
⊦ ∀n r k a.
¬(n = 0) ∧ ¬(r = 0) ∧ a ≤ r * n ⇒ Montgomery.reduce n r k a < 2 * n
⊦ ∀n r s k a.
¬(n = 0) ∧ r * s = k * n + 1 ⇒
Montgomery.reduce n r k a mod n = a * s mod n
⊦ ∀n r k a m.
Montgomery.doubleExp n r k a (suc m) =
let b ← Montgomery.reduce n r k (a * a) in
let c ← if r ≤ b then b - n else b in
Montgomery.doubleExp n r k c m
⊦ ∀n r s k a m.
¬(n = 0) ∧ n ≤ r ∧ r * s = k * n + 1 ⇒
Montgomery.doubleExp n r k a m mod n = (a * s) ↑ 2 ↑ m * r mod n
Input Type Operators
- →
- bool
- Number
- Natural
- natural
- Natural
Input Constants
- =
- select
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∃!
- ∨
- ¬
- cond
- ⊥
- ⊤
- Bool
- Number
- Natural
- *
- +
- -
- <
- ≤
- ↑
- bit0
- bit1
- div
- mod
- suc
- zero
- Natural
Assumptions
⊦ ⊤
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ ∀t. t ⇒ t
⊦ ∀n. 0 ≤ n
⊦ ⊥ ⇔ ∀p. p
⊦ ∀t. t ∨ ¬t
⊦ (¬) = λp. p ⇒ ⊥
⊦ (∃) = λp. p ((select) p)
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀t. t ∨ ⊤ ⇔ ⊤
⊦ ∀n. ¬(suc n = 0)
⊦ ∀n. 0 * n = 0
⊦ ∀n. 0 + n = n
⊦ ∀m. m + 0 = m
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ ∀m. m ↑ 0 = 1
⊦ ∀m. m * 1 = m
⊦ ∀n. n ↑ 1 = n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀m. suc m = m + 1
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀m n. m * n = n * m
⊦ ∀m n. m + n = n + m
⊦ ∀n. n ↑ 2 = n * n
⊦ ∀n. 2 * n = n + n
⊦ ∀m n. ¬(m < n) ⇔ n ≤ m
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀n. ¬(n = 0) ⇒ n mod n = 0
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀m n. m ↑ suc n = m * m ↑ n
⊦ ∀m n. ¬(n = 0) ⇒ m mod n < n
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀m n. n ≤ m ⇒ m - n + n = m
⊦ ∀m n. m < n ⇔ m ≤ n ∧ ¬(m = n)
⊦ ∀m n. ¬(m = 0) ⇒ m * n mod m = 0
⊦ ∀x y z. x = y ∧ y = z ⇒ x = z
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m ↑ (n * p) = (m ↑ n) ↑ p
⊦ ∀a b n. b < a * n ⇒ b div a < n
⊦ ∀m n p. m + n < m + p ⇔ n < p
⊦ ∀m n p. n + m < p + m ⇔ n < p
⊦ ∀m n p. m + p ≤ n + p ⇔ m ≤ n
⊦ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀p. (∀x. ∃y. p x y) ⇔ ∃y. ∀x. p x (y x)
⊦ ∀p. p 0 ∧ (∀n. p n ⇒ p (suc n)) ⇒ ∀n. p n
⊦ ∀n m. ¬(n = 0) ⇒ m mod n mod n = m mod n
⊦ ∀m n p. m * (n + p) = m * n + m * p
⊦ (∃!) = λp. (∃) p ∧ ∀x y. p x ∧ p y ⇒ x = y
⊦ ∀e f. ∃!fn. fn 0 = e ∧ ∀n. fn (suc n) = f (fn n) n
⊦ ∀m n. ¬(n = 0) ⇒ (m div n) * n + m mod n = m
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀m n p. m * p ≤ n * p ⇔ m ≤ n ∨ p = 0
⊦ ∀m n p. m * p < n * p ⇔ m < n ∧ ¬(p = 0)
⊦ ∀m n p q. m = n + q * p ⇒ m mod p = n mod p
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)
⊦ ∀n m p. ¬(n = 0) ⇒ m * (p mod n) mod n = m * p mod n
⊦ ∀n m p. ¬(n = 0) ⇒ (m mod n) * p mod n = m * p mod n
⊦ ∀n m p. ¬(n = 0) ⇒ (m mod n) ↑ p mod n = m ↑ p mod n
⊦ ∀n m p. ¬(n = 0) ⇒ (m mod n) * (p mod n) mod n = m * p mod n
⊦ ∀n a b. ¬(n = 0) ⇒ (a mod n + b mod n) mod n = (a + b) mod n