Package montgomery-thm: Properties of Montgomery multiplication
Information
| name | montgomery-thm |
| version | 1.15 |
| description | Properties of Montgomery multiplication |
| author | Joe Leslie-Hurd <joe@gilith.com> |
| license | MIT |
| provenance | HOL Light theory extracted on 2014-01-31 |
| requires | bool montgomery-def natural natural-bits natural-divides |
| show | Data.Bool Number.Natural |
Files
- Package tarball montgomery-thm-1.15.tgz
- Theory source file montgomery-thm.thy (included in the package tarball)
Theorems
⊦ ∀n r k a m. ¬(n = 0) ∧ n ≤ r ∧ a < r ⇒ Montgomery.doubleExp n r k a m < r
⊦ ∀n r k a.
¬(n = 0) ∧ ¬(r = 0) ∧ a ≤ r * r ⇒ Montgomery.reduce n r k a < r + n
⊦ ∀n r k m a.
¬(n = 0) ∧ ¬(r = 0) ∧ a ≤ r * m ⇒ Montgomery.reduce n r k a < m + n
⊦ ∀n r k a.
¬(n = 0) ∧ ¬(r = 0) ∧ a ≤ r * n ⇒ Montgomery.reduce n r k a < 2 * n
⊦ ∀n r s k a.
¬(n = 0) ∧ r * s = k * n + 1 ⇒
Montgomery.reduce n r k a mod n = a * s mod n
⊦ ∀n r s k a m.
¬(n = 0) ∧ n ≤ r ∧ r * s = k * n + 1 ⇒
Montgomery.doubleExp n r k a m mod n = (a * s) ↑ 2 ↑ m * r mod n
⊦ ∀n r s k a.
r * s = k * n + 1 ⇒
Montgomery.reduce n r k a =
a div r +
((a * k mod r) * n div r + if a * (k * n) mod r = 0 then 0 else 1)
⊦ ∀n r s k a.
2 ↑ r * s = k * n + 1 ⇒
Montgomery.reduce n (2 ↑ r) k a =
Bits.shiftRight a r +
(Bits.shiftRight (Bits.bound (a * k) r * n) r +
fromBool (¬(Bits.bound (a * (k * n)) r = 0)))
External Type Operators
- →
- bool
- Number
- Natural
- natural
- Natural
External Constants
- =
- Data
- Bool
- ∀
- ∧
- ⇒
- ∃
- ∨
- ¬
- cond
- ⊥
- ⊤
- Bool
- Number
- Natural
- *
- +
- -
- <
- ≤
- ↑
- bit0
- bit1
- div
- divides
- fromBool
- mod
- suc
- zero
- Bits
- Bits.bound
- Bits.shiftRight
- Montgomery
- Montgomery.doubleExp
- Montgomery.reduce
- Natural
Assumptions
⊦ ⊤
⊦ ¬⊥ ⇔ ⊤
⊦ ¬⊤ ⇔ ⊥
⊦ bit0 0 = 0
⊦ ∀t. t ⇒ t
⊦ ∀n. 0 ≤ n
⊦ ∀n. n ≤ n
⊦ ⊥ ⇔ ∀p. p
⊦ ∀t. t ∨ ¬t
⊦ ∀n. ¬(n < n)
⊦ (¬) = λp. p ⇒ ⊥
⊦ ∀t. (∀x. t) ⇔ t
⊦ (∀) = λp. p = λx. ⊤
⊦ ∀t. ¬¬t ⇔ t
⊦ ∀t. (t ⇔ ⊤) ⇔ t
⊦ ∀t. ⊤ ∧ t ⇔ t
⊦ ∀t. t ∧ ⊤ ⇔ t
⊦ ∀t. ⊤ ⇒ t ⇔ t
⊦ ∀t. t ⇒ ⊤ ⇔ ⊤
⊦ ∀t. ⊥ ∨ t ⇔ t
⊦ ∀t. ⊤ ∨ t ⇔ ⊤
⊦ ∀t. t ∨ ⊥ ⇔ t
⊦ ∀t. t ∨ ⊤ ⇔ ⊤
⊦ ∀n. ¬(suc n = 0)
⊦ ∀n. 0 * n = 0
⊦ ∀n. 0 + n = n
⊦ ∀m. m + 0 = m
⊦ ∀t. t ⇒ ⊥ ⇔ ¬t
⊦ ∀n. bit1 n = suc (bit0 n)
⊦ ∀m. m ↑ 0 = 1
⊦ ∀m. m * 1 = m
⊦ ∀n. n ↑ 1 = n
⊦ ∀m. 1 * m = m
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ ∀t. (t ⇔ ⊤) ∨ (t ⇔ ⊥)
⊦ ∀m. suc m = m + 1
⊦ ∀t1 t2. (if ⊥ then t1 else t2) = t2
⊦ ∀t1 t2. (if ⊤ then t1 else t2) = t1
⊦ ∀b. fromBool b = if b then 1 else 0
⊦ ∀n. bit0 (suc n) = suc (suc (bit0 n))
⊦ ∀x y. x = y ⇒ y = x
⊦ ∀m n. m * n = n * m
⊦ ∀m n. m + n = n + m
⊦ ∀n. n ↑ 2 = n * n
⊦ ∀n. 2 * n = n + n
⊦ ∀m n. ¬(m < n) ⇔ n ≤ m
⊦ ∀m. m = 0 ∨ ∃n. m = suc n
⊦ (∧) = λp q. (λf. f p q) = λf. f ⊤ ⊤
⊦ ∀n. ¬(n = 0) ⇒ n mod n = 0
⊦ (∃) = λp. ∀q. (∀x. p x ⇒ q) ⇒ q
⊦ ∀m n. suc m ≤ suc n ⇔ m ≤ n
⊦ ∀m n. m ↑ suc n = m * m ↑ n
⊦ ∀m n. ¬(n = 0) ⇒ m mod n < n
⊦ ∀a b. divides a b ⇔ ∃c. c * a = b
⊦ (∨) = λp q. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊦ ∀n r k a. Montgomery.doubleExp n r k a 0 = a
⊦ ∀n k. Bits.bound n k = n mod 2 ↑ k
⊦ ∀n k. Bits.shiftRight n k = n div 2 ↑ k
⊦ ∀m n. n ≤ m ⇒ m - n + n = m
⊦ ∀c x y. (if ¬c then x else y) = if c then y else x
⊦ ∀m n. m < n ⇔ m ≤ n ∧ ¬(m = n)
⊦ ∀m n. ¬(m = 0) ⇒ m * n mod m = 0
⊦ ∀x y z. x = y ∧ y = z ⇒ x = z
⊦ ∀m n p. m * (n * p) = m * n * p
⊦ ∀m n p. m + (n + p) = m + n + p
⊦ ∀m n p. m ↑ (n * p) = (m ↑ n) ↑ p
⊦ ∀a b n. b < a * n ⇒ b div a < n
⊦ ∀m n p. m + n = m + p ⇔ n = p
⊦ ∀p m n. m + p = n + p ⇔ m = n
⊦ ∀m n p. m + n < m + p ⇔ n < p
⊦ ∀m n p. n + m < p + m ⇔ n < p
⊦ ∀m n p. n + m ≤ p + m ⇔ n ≤ p
⊦ ∀m n p. m < n ∧ n < p ⇒ m < p
⊦ ∀m n p. m < n ∧ n ≤ p ⇒ m < p
⊦ ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
⊦ ∀m n. m + n = 0 ⇔ m = 0 ∧ n = 0
⊦ ∀p. p 0 ∧ (∀n. p n ⇒ p (suc n)) ⇒ ∀n. p n
⊦ ∀a b. ¬(a = 0) ⇒ (divides a b ⇔ b mod a = 0)
⊦ ∀n m. ¬(n = 0) ⇒ m mod n mod n = m mod n
⊦ ∀m n p. m * (n + p) = m * n + m * p
⊦ ∀m n p. (m + n) * p = m * p + n * p
⊦ ∀m n. ¬(n = 0) ⇒ (m div n) * n + m mod n = m
⊦ ∀m n p. m * p = n * p ⇔ m = n ∨ p = 0
⊦ ∀m n p. m * n ≤ m * p ⇔ m = 0 ∨ n ≤ p
⊦ ∀m n p. m * p ≤ n * p ⇔ m ≤ n ∨ p = 0
⊦ ∀m n p. m * p < n * p ⇔ m < n ∧ ¬(p = 0)
⊦ ∀m n p q. m = n + q * p ⇒ m mod p = n mod p
⊦ ∀p c x y. p (if c then x else y) ⇔ (c ⇒ p x) ∧ (¬c ⇒ p y)
⊦ ∀n m p. ¬(n = 0) ⇒ m * (p mod n) mod n = m * p mod n
⊦ ∀n m p. ¬(n = 0) ⇒ (m mod n) * p mod n = m * p mod n
⊦ ∀n m p. ¬(n = 0) ⇒ (m mod n) ↑ p mod n = m ↑ p mod n
⊦ ∀n r k a. Montgomery.reduce n r k a = (a + (a * k mod r) * n) div r
⊦ ∀n m p. ¬(n = 0) ⇒ (m mod n) * (p mod n) mod n = m * p mod n
⊦ ∀n a b. ¬(n = 0) ⇒ (a mod n + b mod n) mod n = (a + b) mod n
⊦ ∀n r k a m.
Montgomery.doubleExp n r k a (suc m) =
let b ← Montgomery.reduce n r k (a * a) in
let c ← if r ≤ b then b - n else b in
Montgomery.doubleExp n r k c m