Package montgomery-thm: Properties of Montgomery multiplication

Information

namemontgomery-thm
version1.20
descriptionProperties of Montgomery multiplication
authorJoe Leslie-Hurd <joe@gilith.com>
licenseMIT
provenanceHOL Light theory extracted on 2014-11-01
checksum345a31c5b821a265ec6a51fe132452846fd58d16
requiresbool
montgomery-def
natural
natural-bits
natural-divides
showData.Bool
Number.Natural

Files

Theorems

n r k a.
    ¬(n = 0) ¬(r = 0) a r * r Montgomery.reduce n r k a < r + n

n r k m a.
    ¬(n = 0) ¬(r = 0) a r * m Montgomery.reduce n r k a < m + n

n r k a.
    ¬(n = 0) ¬(r = 0) a r * n Montgomery.reduce n r k a < 2 * n

n r s k a.
    ¬(n = 0) r * s = k * n + 1
    Montgomery.reduce n r k a mod n = a * s mod n

n r s k a.
    r * s = k * n + 1
    Montgomery.reduce n r k a =
    a div r +
    ((a * k mod r) * n div r + if a * (k * n) mod r = 0 then 0 else 1)

n r s k a.
    2 r * s = k * n + 1
    Montgomery.reduce n (2 r) k a =
    Bits.shiftRight a r +
    (Bits.shiftRight (Bits.bound (a * k) r * n) r +
     fromBool (¬(Bits.bound (a * (k * n)) r = 0)))

External Type Operators

External Constants

Assumptions

¬

bit0 0 = 0

t. t t

n. 0 n

n. n n

p. p

n. ¬(n < n)

(¬) = λp. p

() = λp. p = λx.

t. ¬¬t t

t. (t ) t

t. t t

t. t t

t. t t

t. t

t. t t

t. t

t. t t

n. ¬(suc n = 0)

n. 0 * n = 0

n. 0 + n = n

m. m + 0 = m

t. t ¬t

n. bit1 n = suc (bit0 n)

m. m * 1 = m

m. 1 * m = m

() = λp q. p q p

t. (t ) (t )

m. suc m = m + 1

t1 t2. (if then t1 else t2) = t1

b. fromBool b = if b then 1 else 0

n. bit0 (suc n) = suc (suc (bit0 n))

x y. x = y y = x

m n. m * n = n * m

m n. m + n = n + m

n. 2 * n = n + n

m n. ¬(m < n) n m

m. m = 0 n. m = suc n

() = λp q. (λf. f p q) = λf. f

() = λp. q. (x. p x q) q

m n. suc m suc n m n

m n. ¬(n = 0) m mod n < n

a b. divides a b c. c * a = b

() = λp q. r. (p r) (q r) r

n k. Bits.bound n k = n mod 2 k

n k. Bits.shiftRight n k = n div 2 k

c x y. (if ¬c then x else y) = if c then y else x

m n. ¬(m = 0) m * n mod m = 0

x y z. x = y y = z x = z

m n p. m * (n * p) = m * n * p

m n p. m + (n + p) = m + n + p

a b n. b < a * n b div a < n

m n p. m + n = m + p n = p

p m n. m + p = n + p m = n

m n p. m + n < m + p n < p

m n p. n + m < p + m n < p

m n p. n + m p + m n p

m n p. m < n n < p m < p

m n p. m < n n p m < p

m n. m + n = 0 m = 0 n = 0

a b. ¬(a = 0) (divides a b b mod a = 0)

n m. ¬(n = 0) m mod n mod n = m mod n

m n p. m * (n + p) = m * n + m * p

m n p. (m + n) * p = m * p + n * p

m n. ¬(n = 0) (m div n) * n + m mod n = m

m n p. m * p = n * p m = n p = 0

m n p. m * p n * p m n p = 0

m n p. m * p < n * p m < n ¬(p = 0)

p c x y. p (if c then x else y) (c p x) (¬c p y)

n r k a. Montgomery.reduce n r k a = (a + (a * k mod r) * n) div r

n m p. ¬(n = 0) (m mod n) * (p mod n) mod n = m * p mod n

n a b. ¬(n = 0) (a mod n + b mod n) mod n = (a + b) mod n