| name | natural-sub-def |
| version | 1.3 |
| description | natural-sub-def |
| author | Joe Hurd <joe@gilith.com> |
| license | HOLLight |
| provenance | HOL Light theory extracted on 2011-07-20 |
| show | Data.Bool |
⊦ ∀m n. Number.Natural.- (Number.Natural.+ m n) n = m
⊦ T
⊦ (∃) = λP. P ((select) P)
⊦ (∀) = λp. p = λx. T
⊦ ∀x. x = x ⇔ T
⊦ ∀n. Number.Natural.pre (Number.Natural.suc n) = n
⊦ (⇒) = λp q. p ∧ q ⇔ p
⊦ (∧) = λp q. (λf. f p q) = λf. f T T
⊦ (∃) = λP. ∀q. (∀x. P x ⇒ q) ⇒ q
⊦ ∀P.
P Number.Numeral.zero ∧ (∀n. P n ⇒ P (Number.Natural.suc n)) ⇒ ∀n. P n
⊦ ∀e f.
∃fn.
fn Number.Numeral.zero = e ∧
∀n. fn (Number.Natural.suc n) = f (fn n) n
⊦ (∀n. Number.Natural.+ Number.Numeral.zero n = n) ∧
(∀m. Number.Natural.+ m Number.Numeral.zero = m) ∧
(∀m n.
Number.Natural.+ (Number.Natural.suc m) n =
Number.Natural.suc (Number.Natural.+ m n)) ∧
∀m n.
Number.Natural.+ m (Number.Natural.suc n) =
Number.Natural.suc (Number.Natural.+ m n)